Preparation of Head-to-tail π -Conjugated Poly(thiophene-pyridine) and Polypyrimidine by Organometallic Polycondensation

Hiroki Fukumoto, Yoshiki Fujiwara, and Takakazu Yamamoto* Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503

(Received May 31, 2011; CL-110463; E-mail: tyamamot@res.titech.ac.jp)

The metalation of Br-ThPy-Br (Th: thiophene-2,5-diyl; Py: pyridine-2,5-diyl) and 2-iodo-5-bromopyrimidine with i-PrMgCl proceeds regioselectively. The cross-coupling polycondensation of regioselectively metalated intermediates gives head-to-tail π -conjugated poly(thiophene-pyridine) and polypyrimidine, respectively, and their packing structures in the solid state and optical data are discussed.

The synthesis of regioregular π -conjugated heteroaromatic polymers by cross-coupling polymerization is important for controlling the solid structures and electrical and optical properties of π -conjugated polymers.^{1,2} Head-to-tail-type poly(3-alkylthiophene-2,5-diyl) (HT-P3RTh)^{1,2} and poly(6alkylpyridine-2,5-diyl) $(HT-P6RPy)^3$ (Chart 1) have been prepared via the regioselective metalation¹⁻⁴ of dihalo starting materials (e.g., via $XMg-C_4HS(R)-X$, $X = halogen$) and crosscoupling polymerization using Ni(II) catalysts.

Here, we report on the selective metalation of the following dihalo compounds with i-PrMgCl and the utilization of the metalated intermediates for the synthesis of new head-to-tailtype π -conjugated polymers.

Reactions of 1 and 2 with i -PrMgCl⁴ gave the intermediates 3 and 4 (Scheme 1). The hydrolysis of the formed intermediates gave only H -Th-Py-Br and 5-bromopyrimidine, respectively,

Chart 1.

Scheme 1.

and no Br-Th-Py-H or 2-iodopyrimidine was detected in the hydrolysis products by ¹HNMR spectroscopy. The selective formation of 3 was also supported by the production of the following boron compound 5 (Chart 2) from 3 in good yield.⁵ These results support the selective metalation of 1 and 2 by i-PrMgCl. The use of 2,5-dibromopyrimidine, instead of 2, did not lead to the selective formation of 4.

The addition of diphosphine complexes of nickel to 3 and 4 in THF gave **Polymer-1** and **Polymer-2**, respectively.⁵ On the other hand, the zerovalent-nickel-complex $(Ni(0)L_m)$ -promoted dehalogenative polycondensation of dihaloaromatic compounds usually gives head-to-head-rich regiorandom polymers,⁶ and such polymers, i.e., Polymer-1 $^{\prime}$ and Polymer-2', 8 were previously prepared by the dehalogenative polycondensation of 1 and 2,5-dibromopyrimidine, respectively.

Polymer-1 was soluble in HCOOH and showed an intrinsic viscosity $[\eta]$ of 0.58 dL g⁻¹ (dL = 100 mL) in HCOOH. The Suzuki cross-coupling polycondensation of 5 using $[Pd(PPh₃)₄]$ and K_2CO_3 in THF gave **Polymer-1** with a smaller [η] of 0.16 dL g⁻¹. **Polymer-2** was soluble in H_2SO_4 and partly soluble in HCOOH; however, it was insoluble in the other solvents tested. The MALDI-TOF-Mass spectrum of Polymer-2 showed peaks in the range from $m/e = 450$ corresponding to $n = 6$ in $(C_4H_2N_2)_n$ to $m/e = 1200$ $(n = 15)$.

The ¹HNMR spectra of **Polymer-1** and **Polymer-1'** (cf., Figure S1 in Supporting Information⁵) clearly differ from each other owing to the difference in microstructure between the two polymers. Because Polymer-1 has only aromatic protons, detailed analysis of its ¹HNMR spectrum was difficult. However, the following hexyl polymer (Polymer-3a (Scheme $2)^5$) synthesized analogously gives rise to a simple ¹HNMR spectrum (Figure 1), supporting the formation of a regioregular polymer. In particular, the appearance of the α -CH₂ signal, which is often used for evaluating the regioregularity of π -

Scheme 2.

993

Figure 1. 1 HNMR spectrum of Polymer-3a in DCOOD.

Figure 2. CP/MAS solid $^{13}CNMR$ spectrum of Polymer-2. Peaks with * are spinning side bands.

conjugated polymers with an alkyl side chain, $1-3,9$ as a single peak supports the regioregular structure of Polymer-3a; regioirregular polymers usually show split α -CH₂ signals. The ¹H NMR spectrum of **Polymer-3a** is compared with that of a regioregular alternating π -conjugated copolymer of alkylthiazole $(Tz(R))$ and thiophene.⁹ Polymer-3b also gives rises to a simple ¹HNMR spectrum, which indicates its regioregular structure.

Polymer-3a and Polymer-3b are soluble in o-dichlorobenzene and 1,1,2,2-tetrachloroethane. Polymer-3a and Polymer-3b showed $M_{\rm w}$ (weight-average molecular weight) of 11000 and 56000 with polydispersity indexes of 3.6 and 3.1, respectively, in GPC analysis at 140 °C (vs. polystyrene standards, eluent: 1,2,4-trichlorobenzene).

Figure 2 shows the CP/MAS solid 13 C NMR spectrum of **Polymer-2.** A sharp signal at δ 128.1 is assigned to the 5-C carbon of the pyrimidine ring. 2-C, 4-C, and 6-C carbons show a single peak at δ 159.2. The ¹³C NMR spectrum pattern of Polymer-2 is similar to that of Polymer-2'.⁸ However, the 5-C peak of **Polymer-2'** is broader (half width $= 376$ Hz) than that of **Polymer-2** (half width $= 312$ Hz), owing to the regio-irregular structure of Polymer-2'. On the other hand, for the head-tohead (HH)-type poly(pyrimidine-2,5-diyl) (HH-PPyrim) separately prepared from 2,2'-dichloro-5,5'-bipyrimidine,¹⁰ the two ¹³C NMR peaks are shifted upfield (155 and 126 ppm, respectively).

Figure 3. Powder XRD patterns of (a) Polymer-3b, (b) Polymer-3a, and (c) Polymer-1.

Figure 4. (a) Powder XRD patterns of Polymer-2 and Polymer-2'. (b) Postulated herringbone packing of Polymer-2.¹¹

Figure 3 shows the powder X-ray diffraction (XRD) patterns of Polymer-1, Polymer-3a, and Polymer-3b. As shown in Figure 3, the XRD patterns show distinct peaks supporting the notion that the polymers assume ordered structures in the solid state. The XRD pattern of Polymer-1 is considerably different from that of Polymer-1' shown in Figure S_{2.5}

The XRD patterns of Polymer-3a and Polymer-3b resemble those of regioregular π -conjugated aromatic polymers with long alkyl side chains, $1-3$ including the regioregular alternating copolymer of $Tz(R)$ and Th (see above).⁹ The d space of the peak in a low-angle region is usually assigned to the distance between polymer chains separated by alkyl side chains. By increasing the length of an alkyl side chain from hexyl $(2\theta =$ 6.3°, $d = 14 \text{ Å}$) to decyl (2 $\theta = 3.8$ °, $d = 23 \text{ Å}$), the d space increases reasonably.

The comparison of the XRD patterns of Polymer-2 and Polymer-2' shows differences, as shown in Figure 4. The XRD pattern of Polymer-2 shows sharper XRD peaks than that of **Polymer-2'.** Linear π -conjugated polymers without side chains, e.g., $poly(p$ -phenylene) and $poly(\text{thiophene-2,5-diyl})$, often

Paper in Celebration for the 2010 Nobel Prize in Chemistry

994

Figure 5. UV-vis spectra of (a) Polymer-2, (b) $HH-PPyrim$, and (c) **Polymer-2'** in concd H_2SO_4 .

Figure 6. Postulated protonation of Polymer-2 and HH-PPyrim.

assume herringbone packing in the solid state, $¹$ and the packing</sup> of Polymer-2 may also be explained by the herringbone packing in view of its XRD pattern and density, as shown in Figure 4.11

Both Polymer-1 and Polymer-1' showed a UV-vis peak at about 475 nm in HCOOH. Polymer-1 obtained from 5 and with a smaller $[\eta]$ gave rise to a UV-vis peak at 455 nm in HCOOH. Polymer-3a showed a UV-vis peak at 438 nm in HCOOH. Figure 5 shows the UV-vis spectra of **Polymer-2** and related polymers in concd H₂SO₄. The $\pi-\pi^*$ transition peaks of polypyrimidines appear at approximately 335 nm, which is considerably shorter than that (ca. 370 nm) of poly(p-phenylene). $¹$ </sup>

The protonation of the polymers seems to cause the twisting of the main chain, leading to the shift to a lower wavelength (Figure 6).¹² Polymer-1 and Polymer-3a were photoluminescent. Polymer-1 showed emission peaks at 525 and 552 nm with a quantum yield of 7% in HCOOH, and Polymer-3a gave rise to an emission peak at 518 nm with a quantum yield of 5% in HCOOH.

As described above, i-PrMgCl is useful for the regioselective metalation of dihalides of thiophene-pyridine compounds and pyrimidine, and new regiocontrolled π -conjugated polymers have been obtained by polycondensation utilizing the formed intermediate. Detailed analysis of functionalities of the obtained polymers is under way.

The authors are grateful to Dr. Yoshiyuki Nakamura of our institute for experimental supports.

This paper is in celebration of the 2010 Nobel Prize awarded to Professors Richard F. Heck, Akira Suzuki, and Ei-ichi Negishi.

References and Notes

- 1 a) Handbook of Conducting Polymers, 3rd ed., ed. by T. A. Skotheim, J. R. Reynolds, CRC Press, Boca Raton, Florida, 2007. b) Conjugated Polymer Synthesis: Methods and Reactions, ed. by Y. Chujo, Wiley-VCH, Weinheim, 2010. c) H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, [Nature](http://dx.doi.org/10.1038/44359) 1999, 401, 685. d) M. L. Chabinyc, M. F. Toney, R. J. Kline, I. McCulloch, M. Heeney, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja0670714) 2007, 129[, 3226](http://dx.doi.org/10.1021/ja0670714).
- 2 a) R. D. McCullough, S. Tristram-Nagle, S. P. Williams, R. D. Lowe, M. Jayaraman, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja00064a070) 1993, 115, [4910.](http://dx.doi.org/10.1021/ja00064a070) b) T.-A. Chen, X. Wu, R. D. Rieke, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja00106a027) 1995, 117[, 233.](http://dx.doi.org/10.1021/ja00106a027) c) R. Miyakoshi, A. Yokoyama, T. Yokozawa, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja0556880) 2005, 127, 17542.
- 3 a) T. Yamamoto, T. Nakamura, H. Fukumoto, K. Kubota, [Chem. Lett.](http://dx.doi.org/10.1246/cl.2001.502) 2001, 502. b) H. Fukumoto, R. Kimura, S. Sasaki, K. Kubota, T. Yamamoto, J. Polym. Sci[., Part B:](http://dx.doi.org/10.1002/polb.20312) Pol[ym. Phys.](http://dx.doi.org/10.1002/polb.20312) 2005, 43, 215.
- 4 F. Trécourt, G. Breton, V. Bonnet, F. Mongin, F. Marsais, G. Quéguiner, [Tetrahedron](http://dx.doi.org/10.1016/S0040-4020(00)00027-2) 2000, 56, 1349.
- 5 Supporting Information is available electronically on the CSJ-Journal Web site, [http://www.csj.jp/journa](http://www.csj.jp/journals/chem-lett/index.html)ls/chem-lett/ i[ndex.htm](http://www.csj.jp/journals/chem-lett/index.html)l.
- 6 T. Yamamoto, T. Maruyama, Z.-H. Zhou, T. Ito, T. Fukuda, Y. Yoneda, F. Begum, T. Ikeda, S. Sasaki, H. Takezoe, A. Fukuda, K. Kubota, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja00090a031) 1994, 116, 4832.
- 7 T. Yamamoto, Z.-H. Zhou, T. Kanbara, M. Shimura, K. Kizu, T. Maruyama, Y. Nakamura, T. Fukuda, B.-L. Lee, N. Ooba, S. Tomaru, T. Kurihara, T. Kaino, K. Kubota, S. Sasaki, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja961550t) 1996, 118, 10389.
- 8 T. Kanbara, T. Kushida, N. Saito, I. Kuwajima, K. Kubota, T. Yamamoto, [Chem. Lett.](http://dx.doi.org/10.1246/cl.1992.583) 1992, 583.
- 9 T. Yamamoto, M. Arai, H. Kokubo, S. Sasaki, [Macro](http://dx.doi.org/10.1021/ma030167n)molecules 2003, 36[, 7986.](http://dx.doi.org/10.1021/ma030167n)
- 10 a) T. Yamamoto, N. Hayashida, T. Maruyama, K. Kubota, [Chem. Lett.](http://dx.doi.org/10.1246/cl.1998.1125) 1998, 1125. b) N. Hayashida, T. Yamamoto, Bull[. Chem. Soc. Jpn.](http://dx.doi.org/10.1246/bcsj.72.1153) 1999, 72, 1153.
- 11 If one assumes a and b dimensions of 7.4 and 6.9 Å , respectively, for the herringbone packing, d spaces of (110), (200), and (210) diffractions are calculated as 5.05, 3.7, and 3.26 Å , respectively, which agree with the observed diffraction peaks. If **Polymer-2** has a repeating height of 4.2 Å along the polymer chain, similarly to $poly(p$ -phenylene),¹ the density of **Polymer-2** is calculated as $d_{\text{calcd}} = 1.21$ $g \text{ cm}^{-3}$, which roughly agrees with the observed density $d_{\text{obs}} = 1.15 \text{ g cm}^{-3}$. Polymers often give a lower observed density than the calculated density because they contain amorphous parts. The postulated a and b dimensions or the cross section ($S = 51 \text{ Å}^2$) of the pyrimidine unit is larger than those of poly(p-phenylene) (PPP) ($a = 7.8 \text{ Å}$ and $b = 5.5 \text{ Å}$; $S = 43 \text{ Å}^2$ ¹ and poly(2,2'-bipyridine-5,5'-diyl) (PBpy) (a = 8.1 Å and $b = 5.7 \text{ Å}$; $S = 46 \text{ Å}^2$, heta giving the order: S (Polymer-2) > S (PBpy) > S (PPP). The importance of the presence of a lone pair of electrons for the determination of the effective cross section of the aromatic unit is suggested. 12 The repulsion between a lone pair of electrons¹¹ and o -H
- may also cause the shift to a shorter wavelength.